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= f(xi|a) = a1 +
M
∑

j=2

aj · x̃j−1 · (x′i)j−1 + εi

= f(xi|a) = b1 +
M
∑

j=2

bj · (x′i)j−1 + εi with aj =
bj

x̃j−1
, x′i =

xi
x̃

.

The values x′i are within the range of [−1, 1] and the matrix inversion should be
more stable. The true model parameters aj must be derived from the intermediate
values bj .

Other model functions can be treated in the same manner, as long as each x is
multiplicatively combined with one model parameter. Subsection B.7.1 demon-
strates the effectiveness of this normalisation technique.

6.4 Fitting of nonlinear model functions

6.4.1 Error-surface approximation

As already described in Chapter 2, the fitting of models that are nonlinear for
at least one model parameter has to be performed iteratively. The set of M
parameters in a spans an M -dimensional space. Each point in this space is
characterised by a corresponding value of χ2(a) according to equation (6.4). The
entity of all points in that space is called the hyper-surface (see also Section
2.1). Starting from an initial position a, the fitting algorithm is expected to walk
towards the global minimum of χ2(a).

In order to determine the right direction, the principle of expansion by Taylor
series [Gel68] is used. Any function f(x) that is defined in the vicinity of f(x0)
and has infinite continuous derivatives f (ν)(x) can be expanded in the following
fashion

f(x) =

∞
∑

ν=0

f (ν)(x0)

ν!
· (x− x0)

ν

or, when expressing x as sum of the point x0 and an offset h by x = x0 + h,

f(x0 + h) =

∞
∑

ν=0

f (ν)(x0)

ν!
· hν .

For small offsets h, the first three terms including the first and second derivative
of f(x) at x0 provide a fairly good approximation

f(x0 + h) ≃ f(x0) +
f

′

(x0)

1!
· h+

f
′′

(x0)

2!
· h2 . (6.14)
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Now let us analyse how this approximation can be utilised to determine the steps
on the hyper-surface, i.e. the improvement of the parameter vector a.

6.4.2 Gauss-Newton method

The Gauss-Newton method is an approach for finding the minimum in an one-
or multi-dimensional signal. With respect to data fitting via least squares, the
average quadratic error between the observations and the model function has
to be minimised, i.e., the minimum of the hyper-surface χ2(a) has to be found.
This is achieved by approximating the target function by a Taylor series of second
order.

The parameter vector a = (a1 a2 . . . aj . . . aM )T determines the dimension-
ality of the minimisation problem. The variables from equation (6.14) must be
substituted as follows. The independent variable we are looking for is a, thus

x0 −→ a

and the corresponding step size is

h −→∆a .

The function that has to be approximated via Taylor series is

f(x0) −→ χ2(a)

and its derivatives are

f
′

(x0) −→
dχ2(a)

da
=

M
∑

j=1

∂χ2(a)

∂aj

and

f
′′

(x0) −→
d2χ2(a)

da2
=

M
∑

j=1

M
∑

k=1

∂2χ2(a)

∂aj∂ak
.

Corresponding to equation (6.14), this leads to an approximation of the error
surface at the new position a+∆a

χ2(a+∆a) ≃ χ2(a) +
M
∑

j=1

∂χ2(a)

∂aj
·∆aj +

1

2
·

M
∑

j=1

M
∑

k=1

∂2χ2(a)

∂aj∂ak
·∆aj ·∆ak

≃ F (a+∆a) .
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Using matrices, this reads as

F (a+∆a) = χ2(a) + (∆a)T · g +
1

2
· (∆a)T ·H ·∆a (6.15)

with a gradient vector

g =

(

∂χ2(a)

∂a1

∂χ2(a)

∂a2
. . .

∂χ2(a)

∂aM

)T

. (6.16)

The elements gj of g are, using the equation (6.4) for χ2 and wi = 1/σ2
i , equal to

gj =
∂χ2(a)

∂aj
=

N
∑

i=1

wi ·
∂f(xi|a)

∂aj
· [f(xi|a)− yi] . (6.17)

H in eq.(6.15) is the so-called Hessian matrix1

H =

































∂2χ2(a)

∂a1∂a1

∂2χ2(a)

∂a1∂a2
· · · ∂2χ2(a)

∂a1∂aM

∂2χ2(a)

∂a2∂a1

∂2χ2(a)

∂a2∂a2
· · · ∂2χ2(a)

∂a2∂aM

...
...

. . .
...

∂2χ2(a)

∂aM∂a1

∂2χ2(a)

∂aM∂a2
· · · ∂2χ2(a)

∂aM∂aM

































. (6.18)

The elements of H are computed using the product rule for derivations (u · v)′ =
u′ · v + u · v′

Hjk =
∂2χ2(a)

∂aj∂ak
=

∂gj
∂ak

=
N
∑

i=1

wi ·
[

∂2f(xi|a)
∂aj∂ak

· [f(xi|a)− yi] +
∂f(xi|a)

∂aj
· ∂f(xi|a)

∂ak

]

(6.19)

=
N
∑

i=1

wi ·
∂2f(xi|a)
∂aj∂ak

· [f(xi|a)− yi] +
N
∑

i=1

wi ·
∂f(xi|a)

∂aj
· ∂f(xi|a)

∂ak
.

In order to minimise χ2(a+∆a) ≃ F (a+∆a), we have to look for a point where
the gradient of F (a+∆a) (eq. (6.15)) is zero

dF (a+∆a)

d (∆a)T
= F ′(a+∆a) = g +H ·∆a = 0

1 named after the German mathematician Ludwig Otto Hesse (1811-1874)
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with the result of

∆a = −H−1 · g . (6.20)

Voilá! The step ∆a can be computed. However, compared to (2.6), equation
(6.20) seems to be very different. Let us take a closer look at the elements of g
and H (eqs. 6.17 and 6.20). It turns out that

g = −JT ·W · r and H = Q+ JT ·W · J (6.21)

with J, r, and W, already defined in equations (2.3), (2.4), and (2.5), respectively

J =





















∂f(x1|a)
∂a1

∂f(x1|a)
∂a2

· · · ∂f(x1|a)
∂aM

∂f(x2|a)
∂a1

∂f(x2|a)
∂a2

· · · ∂f(x2|a)
∂aM

...
...

. . .
...

∂f(xN |a)
∂a1

∂f(xN |a)
∂a2

· · · ∂f(xN |a)
∂aM





















,

r =



















y1 − f(x1|a)
y2 − f(x2|a)
y3 − f(x3|a)

...

yN − f(xN |a)



















,

and

W =

















w1 0 0 · · · 0
0 w2 0 · · · 0

0 0
. . . · · · ...

...
...

...
. . . 0

0 0 · · · 0 wN

















.

The term Q contains the second-order derivatives in equation (6.20), which are
ignored in many texts – on the one hand because it is zero for linear problems,
and on the other hand because the multiplying term [f(xi|a)− yi] in equation
(6.20) is merely a random measurement error of each point. This error can be
either positive or negative as soon as a is close to its optimum. If the multiplying
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